
1002 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 11, NOVEMBER 1987

Capacitance and Inductance Matrices for
Multistrip Structures in Multilayered

Anisotropic Dielectrics

FRANCISCO MEDINA AND MANUEL HORNO, MEMBER, IEEE

Ab.vtract — In this paper we present a unified variational approach to

determine the capacitance and inductance matices of generalized multi-

strip systems embedded in a multilayered iso/anisotropic dielectric lossless

medium. The analysis is earned out in the spectraf domain to take

advantage of previously obtained recurrence relations which calculate the

Green’s function in the spectral domain. The method leads to a low-order

system of linear equations, which is shown explicitly. Examples and

comparison with previously published results have been included.

I. INTRODUCTION

T

HE PHYSICAL behavior of uniform multiconductor

transmission lines when they are used in the design of

high-frequency electrical filters and couplers is well under-

stood [1]. It is also well known that at the low-frequency

end of the spectrum, a quasi-TEM approximation can be

assumed even when inhomogeneous and/or anisotropic

dielectrics are involved [2, 3]. Under this assumption, the

problem reduces to the determination of the Maxwell

capacitance matrix of the system. Particular interest has

been focused on the planar structures used in MIC tech-

nology. Numerous papers dealing with quasi-static propa-

gation in two- or three-conductor strip systems can be

found in the literature [4–8]. The more general problem of

determining the Maxwell capacitance matrix for a gener-

alized multistrip system has been treated for homogeneous

[9] and nonhomogeneous [10] media. However, for planar

structures embedded in a multilayered dielectric medium,

the spectral-domain analysis seems to be especially suit-

able [11, 12]. Recently an efficient recurrence algorithm to

obtain the Green’s function in the spectral domain associ-

ated with an anisotropic multilayered dielectric medium

has been used to analyze several coplanar [13] and non-

coplanar [14] structures. Similar work dealing with iso-

tropic dielectrics has also been recently published [15]. The

aim of the present paper is to apply variational analysis in

the spectral domain in order to obtain the capacitance and

inductance matrices that characterize a multistrip system

of the type shown in Fig. 1. The method leads to a

low-order system of linear equations whose coefficients

and independent terms are explicitly shown in the work.
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Fig. 1. (a) Cross section of generic multilayered coplanar strip lines. (b)

Cross section of a general noncoplanar multistrip system. U and B

denote electric wall, magnetic wall, or o~en boundarv: L and R
denote electric or magnet;c wall. ‘

J

The choice of basis functions is discussed and several

examples are introduced to show the method’s strength.

II. STATEMENT OF THE PROBLEM:

SPECTRAL ANALYSIS

Consider a system of strip lines in a stratified lossless

dielectric region enclosed in a set of rectangular boundary

conditions. Conductors can be coplanar (Fig. l(a)) or
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non-coplanar (Fig. l(b)) strips. The top and bottom shields

can be considered electric walls, magnetic walls, or open

boundaries. So, open geometries can be simulated by

choosing an open boundary in the top shield and taking
“ b“ in Fig. 1 large enough. The permittivity of the jth

dielectric layer is a diagonal tensor ~j. (It is important to

take into account the dielectric anisotropy from a practical

and theoretical point of view [16].) If nonmagnetic materi-

als (p, = p ~) are assumed, the problem will be reduced to,

the determination of the capacitance matrix for the struc-

tures under consideration with ([ C,j]) and without ([C:])

substrates [3]. These two-dimensional electrostatic prob-

lems can be readily formulated in the spectral domain

instead of working in the space domain [13] –[15]. The first

step in the solution process is to determine Green’s func-

tion in the spectral domain associated with the structure.

When several dielectric layers are involved, this task may

become very tedious. Nevertheless, very simple recurrence

expressions to determine Green’s scalar function for

coplanar structures [13] (Fig. l(a)) and Green’s function

matrix for noncoplanar ones [14] (Fig. l(b)) have been

published. In this way, the Fourier transforms of the

potential function ~, and the surface charge ~, on the

interfaces where the strips are located are related via

~(rz)=G.(lZ) -Fs(rz) (coplanar strips) (la)

[~(n)] = [G,.(n)] [p,(n)] (noncoplanar strips).

(lb)

These relations will be used in the following paragraphs

to derive the inductance and capacitance matrices.

HI. VARIATIONAL ANALYSIS

In a multiconductor system such as the one described in

the previous section, charges and potentials on the strips

are related by means of the matrices [C] and [P] in the

following way:

[Q,]= [c,, ][L]

[K] = [~,,][Q,] [8,] -1= [c,,]. (2)

The i, jth element of the [C] matrix is the free charge per

unit length on the i th conductor when all conductors

except the j th one are grounded and the j th conductor is

charged to a potential of 1 V. Hence, the elements of [C]

can be determined by relating the charge on the conduc-

tors to their potentials. However, in our work, we will take

a different approach, one based on energy calculations. In

this way, we can take advantage of the variational nature

of the energy expressions. For an arbitrary distribution of

charges on the strips, the electrostatic energy stored in the

system per unit length can be expressed as

u=+[Q,][~,J][Qj] =+i[Izl[ct,][TJl (3)

Note that [P] can be expressed in terms of the electro-

static energy for different situations in the following way:

P,, = 2U’’/Q:

P,, = (UiJ– U“- UjJ)/Q,Q,, i+j (4)

1003

where U ‘J is the electrostatic energy stored in the system

per unit length when all conductors except the ith and jth

ones are isolated and discharged and the ith and jth

conductors support charges Q, and Qj, respectively. Now,

()
our problem is the evaluation of the energy for the N + “c

different distributions of charges necessary to compute ill

the elements of the [P] matrix (and consequently the [C]

matrix).

The electric energy can be expressed in the Fourier

domain as follows:

u=: g’[F+’z)]’[ti$r(n)][fir(n)]
n—1

(5)

M = number of interfaces with conducting strips

(M= 1 for coplanar strip5)

s,r=l,. ... M

where P,(n) is the Fourier transform of the surface charge

density on the jth interface (the expressions (1) have been

used in (5)). A knowledge of these distributions of charges

is only possible in very limited cases. However, the sta-

tionary nature of (5) allows us to apply Ritz’s minimiza-

tion procedure to obtain a very accurate estimation of U.

Let n ~ be the number of conducting strips lying on the

s th interface. The surface charge density can be expanded

in a set of basis functions:

(0 elsewhere

(6)

where
b

J()p:. x .U!x=l

and
b

~ ()P:p x .dx=O.

The variational coefficients a~P are obtained by minimi-

zation of the electrostatic energy in (5) (Ritz’s procedure).

This process leads to the following system of linear equa-

tions:

M n, #

where the coefficient matrix is expressed in terms of the

Fourier transforms of the basis functions in the following

way:
m

and the independent terms column is related to the par-

ticular distribution of charged and isolated strips to be

considered for each energy calculation. To determine the

inverse of the capacitance matrix from (4), it is clear that

we must only consider cases with one or two strips charged
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Fig, 2. Detail of the s th interface of the structures in Fig. 1.

and the rest isolated and without charge. Therefore, if the

lth strip of the u th interface and the mth strip of the uth

interface are charged, the independent terms of the equa-

tion system will be given by

(9)
n=l

Once (7) is solved, the electric energy per unit length can

be computed from the following expression:

Expression (10) is evaluated for all possible values of
~,~=l,... , M and 1, m =1,. . . . n,; the [P] coefficients

can then be obtained by using (4). This process must be

carried out for the structure with and without dielectric

layers to obtain [Ci,] and [C;]. In this way, the capacitance

and inductance matrices are obtained and the system is

completely characterized under a quasi-TEM operation.

IV. TRIAL FUNCTIONS

Before generating numerical results, a good choice of

trial functions is necessary. Different sets of basis func-

tions have been considered in this work. From this study,

we conclude that an adequate choice of trial functions

must take into account the singularities of the charge

distributions at the edges of the strips.

A very simple set of functions is to consider a constant

term covering the total charge on the strip and two terms

for the singularities at the edges (see Fig. 2):

[1h(x) =; FL(x)= 1 -2 “j)
s T

~—-&i
3

w:

,2(+=(A-k’ (11)

This choice is good enough to yield very accurate results

for coplanar strip structures. This fact has been concluded

from systematic comparisons with previously published

results and with the data generated by using a more

complete set of basis functions such as the following one

(Fig. 2):

{1
1/2

2
p:o(x)=—

v W$’

[1

~_ (XL) 2
(Wy;)

H pv
(-L))P:p(x) = ;P:o(x)” Cos —’ x x :

-COS(;)JO(;)). (12)

In a general case involving broadside couplings, the

charge distribution is more complicated and one must use

the expansion in (12) to obtain good results. The conver-

gence of the Fourier series is slower with these functions,

but the accuracy in certain cases is improved substantially.

In order to improve the convergence, the asymptotic per-

formance of the series appearing in (8) and (9) has been

considered in the computer programs. In this way, the

number of Fourier terms necessary to obtain the desired

accuracy is drastically reduced and both choices of trial

functions are suitable for quick calculations. CPU time is

less than one second per conductor strip for multistrip

structures on a VAX1 1/780 computer.

V. NUMERICAL RESULTS

The theory presented in this paper was used to write a

computer program which provides the capacitance and

inductance matrices for a system of coupled strips em-

bedded in a multilayered isotropic or anisotropic medium.

From these matrices, mode impedances and phase veloci-

ties are readily obtained [3]. In order to check the results,

we analyzed several particular structures previously studied

by other authors. In the following paragraphs, we show

these comparisons and some new results.

In order to show the effect of a good choice of basis

functions we compare our results with the ones reported

by Koul and Bhat [12]. (These authors provide ‘a useful

method to analyze a wide variety of symmetrical striplike

structures on anisotropic substrates.) In Fig. 3 we compare

the results obtained in [12] for the interelectrode capaci-

tance of a coplanar structure (electro-optic modulator)

with the ones calculated by means of the method in this

paper. We show two curves by using the trial functions in

(12) with n = O and n =5. In both cases we found a very

good agreement for narrow strips. However, a significant

discrepancy is observed for wide ones. In our opinion, ttis

discrepancy is due to the fact that the trial function used in

[12] cannot conveniently represent the charge distribution

on wide strips. These curves were also computed by using

(11) and the discrepancy was less than 0.5 percent for all
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Fig. 3. Interelectrode capacitances of electro-optic modulator as a

function of the width of the strips and their separation. ---- and —

are the results reported in [12]. – .– .– represent our computations with

one basis function, and . . . . represent our computations with five

basis functions.

dimensions. This fact confirms that (11) is a good set of

basis functions for coplanar strips.

The structures shown in Fig. 4(a) and (b) were analyzed

by Kitazawa and Mittra [7] and by Kitazawa and Hayashi

[8]. The effective dielectric constants for C and n modes of
these structures are represented in Figs. 5 and 6. As we can

see, the results in [7] and [8] are in good agreement with

our data.

Table I compares our data with those obtained by Wei

et al. [10] for the case of two coupled microstrip lines

between two ground planes in a homogeneous and iso-

tropic medium. Table II shows the results obtained for a

structure with three strips embedded in a three-layered

dielectric medium between two ground planes. This struc-

ture was also studied by Wei et al. in [10]. We compare

both results in Table II. Significant differences are de-

tected, but these are within the margin of error given in

[10].
More exact calculations were previously reported by

Kammler on multiconductor structures in a homogeneous

and isotropic medium [9]. In Table III, we show the results

obtained in the analysis of a pair of asymmetrical coupled

strips between two ground planes. An excellent agreement

(within +0.002 in all cases) was found. (It must be em-
phasized that the Kammler results are exact to within

~ 0.001.) These data were generated with the trial func-

tions in (12). A typical discrepancy of 1 percent to 5

percent was observed by using (11). However, the set of

I
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Fig. 4. (a) Cross-sectionaf view of asymmetrical coupled strip lines. (b)
Cross-sectionaJ view of broadside-coupled strip lines of unequaf width.
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basis functions in (11) allows us to obtain very good results

in the case of coplanar structures. In this way, Table IV

compares our results for the case of several multiconduc-

tor, coplanar structures with those reported in [9]. The
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REPORTED IN [10]
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Fig. 6. (a) Effective dielectric constant versus S/ W1. (b) Characteristic
impedances versus ,S/ WI. (Dimensions and dielectric constants have

been taken from [8].)
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TABLE I
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ASYMMETRICAL BROADSIDE-COUPLED STRSPSBETWEEN GROUND
PLANES: COMPAtUSON WITH THE CAPACITANCE COEFFICIENTS

REPORTED BY IQMLER [9]
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I
–5.352 9.133

-4.742 7.759

–3.953 6.301

–3.518 5.557

-3.063 4.807
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-2.099 3.264
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TABLE IV

CAPACITANCE COEFFICIENTS COMPUTED FOR SEVERAL COPLANAR

CONFIGURATIONS AND COMPARISON WITH RESULTS IN

KAWLER [9]

—. —

— — —

Present work (Ref. [$

cll/s O = 2.4617 (2.4618)

C1lAO = 2.8878 (2.8!388)

c12/c ~ =-1 .0372 (-1 .0379;

cll/Fo = 2.8903, (2.8914)

C22/E ~ = 3.2908 (3.2915)

C121E ~ =-1 .0060 (-1 .0064)

C13/E ~ =-0.0834 (-0.0841)

C1l/FO = 2. E!904 (2.8914)

C22/C0 = 3.2921 (3.2938)

CJFO =-1 .0057 (-1 .0061)

C231F0 =-0.9766 (-0.9767)

C131C0 =-0.0788 (-0.0795)

C141E0 =-0.0124 (-0.0125)

C1l/sO = 2.8904 (2.8914)

C22/E0 = 3:2921 (3,2939)

c33/co = 3.2943 (3.2961)

CIZ/CO =-1 .0057 (-1 .0061)

C2J=0 :-0.9763 (-0.9764)

c13/Eo =-0.0789 (-0.0794)

c24/F ~ =-0.0745 (-0.0751)

c14/co =-0.0117 (-0.0117)

c15/Eo .-0.0020 (.0.0020)

difference is less than 0.05 percent for the worst of the

cases studied.
Finally, another configuration was analyzed with our

method, one consisting of a three-line symmetrical coupler

with a two-layered anisotropic substrate: sapphire (h z)

and pyrolitic boron nitride (P. B.N.) (h J. Special coupler

structures such as this one are often required in communi-

cation systems and other microwave applications. In these

structures, the quasi-TEM modes (A, B, C) can be

propagated [4]–[6]. Fig. 7 represents the dependence of the
mode characteristics on the ratio hi/h. It can be noticed

that there are two values of hi/h that equalize the mode

phase velocities. This interesting result is a consequence of

the combined effect of the geometry of the structure and

the use of anisotropic substrates [17].

VI. CONCLUSIONS

In this paper the authors have discussed the analysis of

shielded multiconductor strip lines embedded in a multi-

layered anisotropic medium by employing a variational

technique in Fourier’s discrete domain. The calculation of

8.0

7.0

6.0

5.0

4.0

3.0

l\
E =5.12; E =

xl
3.40 (P. B.N

yl

mode A E== 9.40 ; EY2 . 11-60

(sapphire)

.2 .d .6 .8 hi/h

Fig. 7. A, B, and C mode effective dielectric constants for three strips
on two anisotropic dielectric layers as a function of the relative
thickness of each-layer.

the capacitance and inductance matrices for lossless con-

figurations is achieved by computing the electric energy

per unit length of the structures. The Rayleigh-Ritz proce-

dure has been applied to optimize the solution using

adequate trial functions. The method is numerically very

efficient and can be easily implemented in a computer

program.

The number of anisotropic dielectric layers and conduc-

tor strips is no longer a difficulty because the Green’s

function matrix is evaluated by means of a very simple

recurrence algorithm. Some examples have’ been included

to illustrate the strength of the method and its accuracy.

The propagation modes of three lines with two anisotropic

layers have been studied as a particular application.
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