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Capacitance and Inductance Matrices for
Multistrip Structures in Multilayered
Anisotropic Dielectrics

FRANCISCO MEDINA anp MANUEL HORNO, MEMBER, IEEE

Abstract —In this paper we present a unified variational approach to
determine the capacitance and inductance matrices of generalized multi-
strip systems embedded in a multilayered iso /anisotropic dielectric lossless
medium. The analysis is carried out in the spectral domain to take
advantage of previously obtained recurrence relations which calculate the
Green’s function in the spectral domain. The method leads to a low-order
system of linear equations, which is shown explicitly. Examples and
comparison with previously published results have been included.

I. INTRODUCTION

HE PHYSICAL behavior of uniform multiconductor
' transmission lines when they are used in the design of
high-frequency electrical filters and couplers is well under-
stood [1]. It is also well known that at the low-frequency
end of the spectrum, a quasi-TEM approximation can be
assumed even when inhomogeneous and/or anisotropic
dielectrics are involved {2, 3]. Under this assumption, the
problem reduces to the determination of the Maxwell
capacitance matrix of the system. Particular interest has
been focused on the planar structures used in MIC tech-
nology. Numerous papers dealing with quasi-static propa-
gation in two- or three-conductor strip systems can be
found in the literature [4—8]. The more general problem of
determining the Maxwell capacitance matrix for a gener-
alized multistrip system has been treated for homogeneous
[9] and nonhomogeneous [10] media. However, for planar
structures embedded in a multilayered dielectric medium,
the spectral-domain analysis seems to be especially suit-
able [11, 12]. Recently an efficient recurrence algorithm to
obtain the Green’s function in the spectral domain associ-
ated with an anisotropic multilayered dielectric medium
has been used to analyze several coplanar [13] and non-
coplanar [14] structures. Similar work dealing with iso-
tropic dielectrics has also been recently published [15]. The
aim of the present paper is to apply variational analysis in
the spectral domain in order to obtain the capacitance and
inductance matrices that characterize a multistrip system
of the type shown in Fig. 1. The method leads to a
low-order system of linear equations whose coefficients
and independent terms are explicitly shown in the work.
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Fig. 1. (a) Cross section of generic multilayered coplanar strip lines. (b)
Cross section of a general noncoplanar multistrip system. U and B
denote electric wall, magnetic wall, or open boundary; L and R
denote electric or magnetic wall.

The choice of basis functions is discussed and several
examples are introduced to show the method’s strength.

II. STATEMENT OF THE PROBLEM:
SPECTRAL ANALYSIS

Consider a system of strip lines in a stratified lossless
dielectric region enclosed in a set of rectangular boundary
conditions. Conductors can be coplanar (Fig. 1(a)) or
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non-coplanar (Fig. 1(b)) strips. The top and bottom shields
can be considered electric walls, magnetic walls, or open
boundaries. So, open geometries can be simulated by
choosing an open boundary in the top shield and taking
“b” in Fig. 1 large enough. The permittivity of the jth
dielectric layer is a diagonal tensor &, (It is important to
take into account the dielectric anisotropy from a practical
and theoretical point of view [16].) If nonmagnetic materi-
als (p1, = p,) are assumed, the problem will be reduced to
the determination of the capacitance matrix for the struc-
tures under consideration with ([C, ]) and without ([C])
substrates [3]. These two-dimensional electrostatic prob-
lems can be readily formulated in the spectral domain
instead of working in the space domain [13]-[15]. The first
step in the solution process is to determine Green’s func-
tion in the spectral domain associated with the structure.
When several dielectric layers are involved, this task may
become very tedious. Nevertheless, very simple recurrence
expressions to determine Green’s scalar function for
coplanar structures [13] (Fig. 1(a)) and Green’s function
matrix for noncoplanar ones [14] (Fig. 1(b)) have been
published. In this way, the Fourier transforms of the
potential function ¥V, and the surface charge 5, on the
interfaces where the strips are located are related via

Vi(n) = G,(n)-p,(n)
[7,(m)] = [6,.(m)][5.(n)]

(coplanar strips)  (1a)

(noncoplanar strips).
(1b)
These relations will be used in the following paragraphs
to derive the inductance and capacitance matrices.

III. VARIATIONAL ANALYSIS

In a multiconductor system such as the one described in
the previous section, charges and potentials on the strips
are related by means of the matrices [C] and [P] in the
following way:

[e)=[c,][7]

vl= [Pu] [QJ] [Pu]_lz [Cu']' 2

The i, jth element of the [C] matrix is the free charge per
unit length on the ith conductor when all conductors
except the jth one are grounded and the jth conductor is
charged to a potential of 1 V. Hence, the elements of [C]
can be determined by relating the charge on the conduc-
tors to their potentials. However, in our work, we will take
a different approach, one based on energy calculations. In
this way, we can take advantage of the variational nature
of the energy expressions. For an arbitrary distribution of
charges on the strips, the electrostatic energy stored in the
system per unit length can be expressed as

Note that [ P] can be expressed in terms of the electro-
static energy for different situations in the following way:
P,=2U0"/Q}

P,=(U-U"-U")/Q0, i#j (4)
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where U/ is the electrostatic energy stored in the system
per unit length when all conductors except the ith and jth
ones are isolated and discharged and the ith and jth
conductors support charges Q, and @, respectively. Now,
our problem is the evaluation of the energy for the N + ("2)
different distributions of charges necessary to compute all

the elements of the [ P] matrix (and consequently the [C]
matrix).

The electric energy can be expressed in the Fourier
domain as follows:

U= 3 5] [6,n)][5n)] s

n=1
M = number of interfaces with conducting strips
(M =1 for coplanar strips)

M
where §,(n) is the Fourier transform of the surface charge
density on the jth interface (the expressions (1) have been
used in (5)). A knowledge of these distributions of charges
is only possible in very limited cases. However, the sta-
tionary nature of (5) allows us to apply Ritz’s minimiza-
tion procedure to obtain a very accurate estimation of U.

Let n, be the number of conducting strips lying on the

sth interface. The surface charge density can be expanded
in a set of basis functions:

s, r=1,--

$7
ns ny

2 Lo (x)+

1=1

H 7
aj, p,(x)) xL,<x<xR
=1

1

p(x)=

0 elsewhere
(6)

where
[ooto(x)-dx =1
0

and

[(8,(x)-dx =0.
0

The variational coefficients a], are obtained by minimi-
zation of the electrostatic energy in (5) (Ritz’s procedure).
This process leads to the following system of linear equa-
tions:

M on, Y
S Y Y ay(rs)al,=Br) ()
s=1y=1p=1
where the coefficient matrix is expressed in terms of the
Fourier transforms of the basis functions in the following
way:

e8]
AG(r,5) = L By(n) Gu(n)-8,(n) — (8)

n=—=1
and the independent terms column is related to the par-
ticular distribution of charged and isolated strips to be
considered for each energy calculation. To determine the
inverse of the capacitance matrix from (4), it is clear that
we must only consider cases with one or two strips charged
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Fig. 2. Detail of the sth interface of the structures in Fig. 1.

and the rest isolated and without charge. Therefore, if the
[th strip of the uth interface and the mth strip of the vth
interface are charged, the independent terms of the equa-
tion system will be given by

(©)

Once (7) is solved, the electric energy per unit length can
be computed from the following expression:

o
By(r) = ;1 Brol Gruuo + Grofyy } -

o0

L A GulBul® + G570

n=1

1
Ulm(u,U) = E

M ngony
+2-G 8,00~ X X X alBl(s)). (10)

s=1y=1p=1

Expression (10) is evaluated for all possible values of
wu,v=1,---,M and [,m=1,--- n,; the [P] coefficients
can then be obtained by using (4). This process must be
carried out for the structure with and without dielectric
layers to obtain [C; ] and [C/}]. In this way, the capacitance
and inductance matrices are obtained and the system is
completely characterized under a quasi-TEM operation.

1V. TriaL FUNCTIONS

Before generating numerical results, a good choice of
trial functions is necessary. Different sets of basis func-
tions have been considered in this work. From this study,
we conclude that an adequate choice of trial functions
must take into account the singularities of the charge
distributions at the edges of the strips.

A very simple set of functions is to consider a constant
term covering the total charge on the strip and two terms
for the singularities at the edges (see Fig. 2):

1 1 1
pio(x)=Ws, Pha(x) = ﬁ—2 W
W
pralx) = | e 2 ()
: XR'—x wy
Wi
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This choice is good enough to yield very accurate results
for coplanar strip structures. This fact has been concluded
from systematic comparisons with previously published
results and with the data generated by using a more
complete set of basis functions such as the following one
(Fig. 2):

1/2
) B 2 1
Pho(x) = W, - [(x—Ss’) ]2
(w:/2)
T p7
o 0) = ot ) os| 2 (12|

pT pT

cos( 5 )Jo( 5 )} (12)

In a general case involving broadside couplings, the
charge distribution is more complicated and one must use
the expansion in (12) to obtain good results. The conver-
gence of the Fourier series is slower with these functions,
but the accuracy in certain cases is improved substantially.
In order to improve the convergence, the asymptotic per-
formance of the series appearing in (8) and (9) has been
considered in the computer programs. In this way, the
number of Fourier terms necessary to obtain the desired
accuracy is drastically reduced and both choices of trial
functions are suitable for quick calculations. CPU time is
less than one second per conductor strip for multistrip
structures on a VAX11 /780 computer.

V. NUMERICAL RESULTS

The theory presented in this paper was used to write a
computer program which provides the capacitance and
inductance matrices for a system of coupled strips em-
bedded in a multilayered isotropic or anisotropic medium.
From these matrices, mode impedances and phase veloci-
ties are readily obtained [3]. In order to check the results,
we analyzed several particular structures previously studied
by other authors. In the following paragraphs, we show
these comparisons and some new results.

In order to show the effect of a good choice of basis
functions we compare our results with the ones reported
by Koul and Bhat [12]. (These authors provide ‘a useful
method to analyze a wide variety of symmetrical striplike
structures on anisotropic substrates.) In Fig. 3 we compare
the results obtained in [12] for the interelectrode capaci-
tance of a coplanar structure (electro-optic modulator)
with the ones calculated by means of the method in this
paper. We show two curves by using the trial functions in
(12) with n =0 and n = 5. In both cases we found a very
good agreement for narrow strips. However, a significant
discrepancy is observed for wide ones. In our opinion, this
discrepancy is due to the fact that the trial function used in
[12] cannot conveniently represent the charge distribution
on wide strips. These curves were also computed by using
(11) and the discrepancy was less than 0.5 percent for all
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Fig. 3. Interelectrode capacitances of electro-optic modulator as a
function of the width of the strips and their separation. ---- and ——
are the results reported in [12]. —-—- - represent our computations with
one basis function, and -.-- represent our computations with five
basis functions.

dimensions. This fact confirms that (11) is a good set of
basis functions for coplanar strips. '

The structures shown in Fig. 4(a) and (b) were analyzed
by Kitazawa and Mittra [7] and by Kitazawa and Hayashi

[8]. The effective dielectric constants for C and 7= modes of -

these structures are represented in Figs. 5 and 6. As we can
see, the results in [7] and [8] are in good agreement with
our data.

Table I compares our data with those obtained by Wei
et al. [10] for the case of two coupled microstrip lines
between two grouad planes in a homogeneous and iso-
tropic medium. Table IT shows the results obtained for a
structure with three strips embedded in a three-layered
dielectric medium between two ground planes. This struc-
ture was also studied by Wei er al. in [10]. We compare
both results in Table II. Significant differences are de-
tected, but these are within the margin of error given in
(10}

More exact calculations were previously reported by
Kammler on multiconductor structures in a homogeneous
and isotropic medium [9]. In Table III, we show the results
obtained in the analysis of a pair of asymmetrical coupled
strips between two ground planes. An excellent agreement
(within 4+0.002 in all cases) was found. (It must be em-
phasized that the Kammler results are exact to within
+0.001.) These data were generated with the trial func-
tions in (12). A typical discrepancy of 1 percent to 5
percent was observed by using (11). However, the set of

1005
Y
o I e
4z 5 -2 2 by 22 x
. :
(a)
Y
;
h Wy To
¥ -t n ‘—‘1 =
2d _;b%_ __S;Z_;',a__L_“i;_sil_B‘l_e—'“ X
1 H H
h L Wg——] €
1

(b)

Fig. 4. (a) Cross-sectional view of asymmetrical coupled strip lines. (b)
Cross-sectional view of broadside-coupled strip lines of unequal width.
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Fig. 5. Quasi-static characteristics versus W, / W,. (The dimensions and
dielectric constants have been taken-fronr[7])

basis functions in (11) allows us to obtain very good results
in the case of coplanar structures. In this way, Table IV
compares our results for the case of several multiconduc-
tor, coplanar structures with those reported in [9]. The
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TABLE 1
VALUES OF THE CAPACITANCE AND INDUCTANCE
COEFFICIENTS FOR TwO COUPLED MICROSTRIP
LINES BETWEEN TwO GROUND PLANES IN A
HOMOGENEOUS MEDIUM AND COMPARISON WITH
THE DATA REPORTED IN [10].

= 9.5 f
F‘" 3 ‘¥4,%'72 € €
— 3 __,,1 3
iT J,l
5
Ref. llO] Present work
-9 -9
Cll 0.5356 x 10 0.5320 x 10
., -0.9250 x 10~*1 ~0.1008 x 10710
-9 -9
sy 0.7834 x 10 0.7790 x 10
c 0.5466 x 10710 0.5600 x 1071°
oll
- —-11
c ~0.9439 x 10712 ~0.1062 x 10
ol?2
-10 -10
. .8200 x 10
COZZ 0.7994 x 10 0 X
-6 -6
L, 0.2033 x 10 0.1987 x 10
-8 -8
Ly, 0.2401 x 10 0.2570 x 10
-6 -6
Lo 0.1390 x 10 0.1357 x 10

TABLE 1I
VALUES OF THE CAPACITANCE AND INDUCTANCE COEFFICIENTS
FOR THREE COUPLED STRIP LINES IN A THREE-LAYERED DIELECTRIC
BETWEEN GROUND PLANES AND COMPARISON WITH THE DATA
REPORTED IN [10]

1
k_*‘ﬁ___lfjl E1=6.&)'
T
3 £,=9.58
4
e
o B a5 .
~ | a5
£354.2 €5 =2 b
! p——— 6 ———i 2
| 1 X
Ref. (10) Present work Difference
¢, 0.4900 x 1077 0.5115 x 1070 4.3 %
Cn ~0.5737 x 10712 —0.5029 x 102 3.3 %
Cla ~0.6457 x 10 1° -0.6972 x 10720 7.7 %
oo 0.2459 x 102 0.2572 x 1072 4.5 %
€,y -0.6138 x 10710 ~0.6659 x 10°1° 8.1 %
Cas 0.2865 x 1070 0.2977 x 1070 3.8%
€11 0.7773 x 10729 0.8110 x 1071° 4.2 %
€10 -0.1036 x 10712 -0.1075 x 1012 3.7 %
Co13 -0.7193 x 1071t -0.7812 x 10711 8.2 %
Coon 0.5212 x 10°2° 0.544a5 x 10710 4.4 %
Coos -0.9788 x 10711 -0.1068 x 1010 8.9 %
c 0.3876 x 1010 0.4040 x 10710 4.1 %
033
L 0.1456 x 10°° 0.1400 x 10~° 3.9%
11 & e
Lo 0.5630 x 10 0.5887 x 1C 4.5 %
L 0.2844 x 1077 0.2862 x 10~ 0.6 %
13 5 5
Ly, 0.2240 x 10 0.2157 x 10 3.8 %
L 0.5762 x 107 0.5815 x 107 1.0 %
23 6 5
Lag 0.3065 x 10 0.2963 x 10 3.4 %
TABLE III

ASYMMETRICAL BROADSIDE-COUPLED STRIPS BETWEEN GROUND
PLANES: COMPARISON WITH THE CAPACITANCE COEFFICIENTS
REPORTED BY KAMMLER [9]

T b W] —y
I _— 4
0.2
| 5= 7
* * *

Wy W Cll/% Clz/‘o széo C11/5o C12/6O C22/50
1.0 1.0 9.136 -5.355 9.136 9.133 -5.352 9.133
1.0 0.8 8.862 -4,743 7.760 8.860 -4.742 7.759
1.0 0.6 8.434 -3.953 6.301 8.434 -3.953 6.301
1.0 0.5 8.179 -3.518 5.558 8.179 -3.518 5.557
1.0 0.4 7.904 -3.064 4,807 7.903 ~3.063 4.807
1.0 0.3 7.611 ~2.592 4,048 7.610 -2.592 4.046
1.0 0.2 7.300 -2.100 3.268 7.299 -2.099 3.264
1.0 0.1 6.956 -1.561 2.424 6.956 -1.561 2.423
1.0 0.05 6.746 -1.234 1.916 6.746 ~1.235 1.915 J

Reference I 9] Present work J
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TABLE IV
CAPACITANCE COEFFICIENTS COMPUTED FOR SEVERAL COPLANAR
CONFIGURATIONS AND COMPARISON WITH RESULTS IN

KAMMLER [9]

Present work (Ref. [9] )
Cyq/E, = 2.4617 (2.4618)
cll/sO = 2.8878 (2.8888)
Clz/eo =-1.0372 (-1.0379)
C1q/f, = 2.8903, (2.8914)
C,p/E = 3.2908 (3.2915)
Cyp/e, =-1.0060 (-1.0064)
C 4/, =-0.0834 (-0.0841)
cu/eo = 2.8904 (2.8914)
Cpple, = 3.2921 (3.2938)
Cyp/e, ==1.0057 (-1,0061)
C,g/e, =-0.9766 (=0.9767)
C, /e, ==0.0788 (-0.0795)
Cy4/e, ==0.0124 (-0.0125)
Cy1/e, = 2.8904  (2.8914)
Chple, = 32921 (3,2939)
Cay/e, = 3.2943 (3.2961)
C,,/e, =~1.0057 (-1.0061)
023/5O =-0.9763 (-0.9764)
C,4/e, =-0.0789 (-0.0794)
Cpule, ==0.0745 (-0.0751)
C14/e, =-0-0117 (-0.0117)
015/6O =-0.0020 (-0.0020)

difference is less than 0.05 percent for the worst of the

cases studied.

Finally, another configuration was analyzed with our
method, one consisting of a three-line symmetrical coupler
with a two-layered anisotropic substrate: sapphire (h,)
and pyrolitic boron nitride (P.B.N.) (k,). Special coupler
structures such as this one are often required in communi-
cation systems and other microwave applications. In these
structures, the quasi-TEM modes (A,B,C) can be
propagated [4]-[6]. Fig. 7 represents the dependence of the
mode characteristics on the ratio /4, /h. It can be noticed
that there are two values of 4, /h that equalize the mode
phase velocities. This interesting result is a consequence of
the combined effect of the geometry of the structure and
the use of anisotropic substrates [17].

VL

In this paper the authors have discussed the analysis of
shielded multiconductor strip lines embedded in a multi-
layered anisotropic medium by employing a variational
technique in Fourier’s discrete domain. The calculation of

CONCLUSIONS
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Fig. 7. A, B, and C mode effective dielectric constants for three strips
on two anisotropic dielectric layers as a function of the relative
thickness of each layer.

the capacitance and inductance matrices for lossless con-
figurations is achieved by computing the electric energy
per unit length of the structures. The Rayleigh—Ritz proce-
dure has been applied to optimize the solution using
adequate trial functions. The method is numerically very
efficient and can be easily implémented in a computer
program.

The number of anisotropic dielectric layers and conduc-
tor strips is no longer a difficulty because the Green’s
function matrix is evaluated by means of a very simple
recurrence algorithm. Some examples have been included
to illustrate the strength of the method and its accuracy.
The propagation modes of three lines with two anisotropic
layers have been studied as a particular application.
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